On The Homogeneous Cubic Equation with Six Unknowns

$\alpha x y(x+y)+\beta z w(z+w)=(\alpha+\beta) X Y(X+Y)$
M.A.Gopalan ${ }^{1}$, S.Vidhyalakshmi ${ }^{2}$, K.Lakshmi ${ }^{3}$
${ }^{1,2}$, Proffessor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamil Nadu, India
${ }^{3}$ Lecturer, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamil Nadu, India

Abstract

The homogeneous cubic equation with six unknowns represented by the equation $\alpha x y(x+y)+\beta z w(z+w)=(\alpha+\beta) X Y(X+Y)$ is analyzed for its patterns of non-zero distinct integral solutions and different methods of integral solutions are illustrated. A few relations between the solutions and the special numbers are presented

KEYWORDS: Homogeneous cubic equation, integral solutions
M.Sc 2010 mathematics subject classification: 11D25

NOTATIONS:
$T_{m, n}$-Polygonal number of rank n with size m
P_{n}^{m} - Pyramidal number of rank n with size m
$P R_{n}$ - Pronic number of rank n
$O H_{n}$ - Octahedral number of rank n
$S O_{n}$-Stella octangular number of rank n
S_{n}-Star number of rank n
J_{n}-Jacobsthal number of rank of n
j_{n} - Jacobsthal-Lucas number of rank n
$K Y_{n}$-kynea number of rank n
$C P_{n, 3}$ - Centered Triangular pyramidal number of rank n
$C P_{n, 6}$ - Centered hexagonal pyramidal number of rank n
$F_{4, n, 3}$-Four Dimensional Figurative number of rank n whose generating polygon is a triangle
$F_{4, n, 5}$ - Four Dimensional Figurative number of rank n whose generating polygon is a pentagon.

I. INTRODUCTION

The theory of diophantine equations offers a rich variety of fascinating problems [1-3]. Particularly, in [4-9] the cubic equations with 4 unknowns and in [10-11] cubic equations with 5 unknowns are studied for their integral solutions. This communication concerns with an another non-zero cubic equation with six unknowns given by $\alpha x y(x+y)+\beta z w(z+w)=(\alpha+\beta) X Y(X+Y)$. Infinitely many non-zero integer triples (x, y, z) satisfying the above equation are obtained. Various interesting properties among the values of x, y and z are presented.

II. METHOD OF ANALYSIS

The diophantine equation representing the cubic equation with six unknowns under consideration is

$$
\begin{equation*}
\alpha x y(x+y)+\beta z w(z+w)=(\alpha+\beta) X Y(X+Y) \tag{1}
\end{equation*}
$$

Assuming $x=u+p, y=u-p, z=u+q, z=u-q, x=u+v, x=u-v$
in (1), it reduces to the equation,

$$
\alpha p^{2}+\beta q^{2}=(\alpha+\beta) v^{2}
$$

Again using the linear transformation

$$
\begin{equation*}
p=S-\beta T, q=S+\alpha T \tag{4}
\end{equation*}
$$

in (3), it reduces to

$$
\begin{equation*}
S^{2}+\alpha \beta T^{2}=v^{2} \tag{5}
\end{equation*}
$$

The above equation (5) is solved through different approaches and thus, one obtains different sets of solutions to (1)

1. CaseI: $\alpha \beta$ is not a square.

1.1 Approach1:

The solution to (5) can be written as

$$
\begin{equation*}
S=\alpha \beta a^{2}-b^{2}, T=2 a b, v=\alpha \beta a^{2}+b^{2} \tag{6}
\end{equation*}
$$

In view of (6), (4) and (2) the integral solution of (1) is obtained as

$$
\begin{align*}
& x=u+\alpha \beta a^{2}-b^{2}-2 \beta a b \\
& y=u-\left(\alpha \beta a^{2}-b^{2}-2 \beta a b\right) \\
& z=u+\alpha \beta a^{2}-b^{2}+2 \alpha a b \\
& w=u-\left(\alpha \beta a^{2}-b^{2}+2 \alpha a b\right) \tag{7}\\
& X=u+\alpha \beta a^{2}+b^{2} \\
& Y=u-\alpha \beta a^{2}-b^{2}
\end{align*}
$$

Properties:

1. $3 k\left[(x+z)-(\alpha \beta-(\alpha-\beta)-1)\left(T_{6, a}+3\left(O H_{a}\right)-2 C P_{a, 6}\right)\right]$ is a nasty number
2. $x(a, a)+w(a, a)+2(\alpha+\beta)\left(2 T_{3, a}+T_{6, a}-2 T_{4, a}\right) \equiv 0(\bmod 2)$
3. $k+\alpha \beta\left(6 F_{4, a, 5}-2 P_{a}^{5}+2 T_{4, a}\right)-4 \beta T_{3, a}-x(a(a+1), 1)=1$
4.3(X $(a, a)-Y(a, a))-(1+\alpha \beta)\left(S_{a}+12 C P_{a, 3}-6 C P_{a, 6}-1\right)=0$
$5.2(z(a, a)-w(a, a))-(\alpha \beta+2 \alpha-1)\left[T_{10, a}+9(O H)_{a}-6 C P_{a, 6}\right]=0$
4. $w\left(2^{2 n}, 2^{2 n}\right)-x\left(2^{2 n}, 2^{2 n}\right)+(\alpha \beta-(\alpha-\beta)-1) j_{4_{n+1}}+\alpha \beta-\alpha+\beta=1$.
5. $x(a, a)+X(a, a)-\beta(\alpha-1)\left(2 T_{3, a}+T_{6, a}-T_{4, a}\right)=0$

1.2 Approach2:

Let $v=a^{2}+\alpha \beta b^{2}$
Now, rewrite (5) as,

$$
\begin{equation*}
S^{2}+\alpha \beta T^{2}=v^{2} \times 1 \tag{9}
\end{equation*}
$$

Also 1 can be written as

$$
\begin{equation*}
1=\frac{\left(\alpha \beta-k^{2}+i 2 k \sqrt{\alpha \beta}\right)\left(\alpha \beta-k^{2}-i 2 k \sqrt{\alpha \beta}\right)}{\left(\alpha \beta+k^{2}\right)^{2}} \tag{10}
\end{equation*}
$$

Substituting (10) and (8) in (9) and using the method of factorisation, define

$$
\begin{equation*}
(S+i \sqrt{\alpha \beta} T)=\frac{\left(\alpha \beta-k^{2}+i 2 k \sqrt{\alpha \beta}\right)(a+i \sqrt{\alpha \beta} b)^{2}}{\left(\alpha \beta+k^{2}\right)} \tag{11}
\end{equation*}
$$

Equating real and imaginary parts in (11) we get

$$
\left.\begin{array}{l}
S=\frac{1}{\left(\alpha \beta+k^{2}\right)}\left[\left(\alpha \beta-k^{2}\right)\left(a^{2}-\alpha \beta b^{2}\right)-4 \alpha \beta k a b\right] \tag{12}\\
T=\frac{1}{\left(\alpha \beta+k^{2}\right)}\left[\left(\alpha \beta-k^{2}\right) 2 a b+2 k\left(a^{2}-\alpha \beta b^{2}\right)\right]
\end{array}\right\}
$$

Considering (2), (4), (8) \& (12) and performing some algebra, the corresponding solutions of (1) are given by

$$
\begin{align*}
& x=u+\left(\alpha \beta+k^{2}\right)(f-\beta g) \\
& y=u-\left(\alpha \beta+k^{2}\right)(f-\beta g) \\
& z=u+\left(\alpha \beta+k^{2}\right)(f+\alpha g) \tag{13}\\
& w=u-\left(\alpha \beta+k^{2}\right)(f+\alpha g) \\
& X=u+\left(\alpha \beta+k^{2}\right)^{2}\left(A^{2}+\alpha \beta B^{2}\right) \\
& Y=u-\left(\alpha \beta+k^{2}\right)^{2}\left(A^{2}+\alpha \beta B^{2}\right)
\end{align*}
$$

where

$$
\left.\begin{array}{l}
f=\left(\alpha \beta-k^{2}\right)\left(A^{2}-\alpha \beta B^{2}\right)-4 \alpha \beta k A B \tag{14}\\
g=\left(\alpha \beta-k^{2}\right) 2 A B+2 k\left(A^{2}-\alpha \beta B^{2}\right)
\end{array}\right\}
$$

Properties:

1. $6 k\left[x(a(a+1), a(a+1))-\left\{\alpha \beta+k^{2}\right\}\left\{\left(\alpha \beta-k^{2}-2 k \beta\right)(1-\alpha \beta)-2\left(2 \alpha \beta k-\alpha k+k^{2}\right)\right\}\right.$

$$
\left.\left\{24 F_{4, a, 3}-24 P_{a}^{3}+4 T_{3, a}\right\}\right]
$$

is a nasty number
2. $x(a, a)-y(a, a)+z(a, a)-w(a, a)=2\left(\alpha \beta+k^{2}\right)\left[2\left(\alpha \beta-k^{2}\right)(1-\alpha \beta)-4 \alpha \beta k+2(\alpha-\beta)\left(\alpha k-k^{2}\right)\right.$

$$
+2 k(1-\alpha \beta)]\left[2 T_{3, a}-2 \mathrm{CP}_{\mathrm{a}, 6}+\mathrm{SO}_{\mathrm{a}}\right]
$$

.3. $k^{2}\left[w(a, a)+\left\{\alpha \beta+k^{2}\right\}\left\{\left(\alpha \beta-k^{2}+2 k \alpha\right)(1-\alpha \beta)-2\left(2 \alpha \beta k+\alpha^{2} \beta-\alpha k^{2}\right)\right\}\left\{2 P_{a}^{8}-S O_{a}\right\}\right]$ is a cubic integer
4. $X(a(a+1), a(a+1))-Y(a(a+1), a(a+1))=2\left(\alpha \beta+k^{2}\right)^{2}(1+\alpha \beta)\left(2 T_{3, a^{2}}+2 C P_{a, 6}\right)$

1.3 Approach3:

1 can also be written as

$$
1=\frac{(\alpha-\beta+i 2 \sqrt{\alpha \beta})(\alpha-\beta-i 2 \sqrt{\alpha \beta})}{(\alpha+\beta)^{2}}
$$

Following the same procedure as in approach2 we get the integral solution of (1) as

$$
\left.\begin{array}{l}
x=u+(\alpha+\beta)\left(f_{1}-\beta g_{1}\right) \\
y=u-(\alpha+\beta)\left(f_{1}-\beta g_{1}\right) \\
z=u+(\alpha+\beta)\left(f_{1}+\alpha g_{1}\right) \\
w=u-(\alpha+\beta)\left(f_{1}+\alpha g_{1}\right) \tag{15}\\
X=u+(\alpha+\beta)^{2}\left(A^{2}+\alpha \beta B^{2}\right) \\
Y=u-(\alpha+\beta)^{2}\left(A^{2}+\alpha \beta B^{2}\right)
\end{array}\right\}
$$

Where

$$
\left.\begin{array}{l}
f_{1}=(\alpha-\beta)\left(A^{2}-\alpha \beta B^{2}\right)-4 \alpha \beta A B \tag{16}\\
g_{1}=2\left(A^{2}-\alpha \beta B^{2}\right)+2 A B(\alpha-\beta)
\end{array}\right\}
$$

Properties:

$1.6 k\left\{4 x(a, a)-(\alpha+\beta)\left[(\alpha-3 \beta)(1-\alpha \beta)-2\left(\alpha \beta+\beta^{2}\right)\right]\left[T_{10, a}+6 T_{3, a}-3 T_{4, a}\right]\right\}$ is a nasty number
2. $3 y(a, a)+(\alpha+\beta)\left[(3 \alpha-\beta)(1-\alpha \beta)-2\left(\alpha \beta+\beta^{2}\right)\right]\left[T_{8, a}+6 T_{4, a}-4 T_{5, a}\right] \equiv 0(\bmod 3)$
3. $7 z(a, a)-(\alpha+\beta)\left[(3 \alpha-\beta)(1-\alpha \beta)-2\left(3 \alpha \beta-\alpha^{2}\right)\right]\left[2 T_{9, a}+10 T_{3, a}-5 T_{4, a}\right] \equiv 0(\bmod 7)$
4. $k^{2}\left\{w(a, a)+(\alpha+\beta)\left[(3 \alpha-\beta)(1-\alpha \beta)-2\left(3 \alpha \beta-\alpha^{2}\right)\right]\left[2 P_{a}^{5}-C P_{a, 6}\right]\right\}$ is a cubic integer
5. $\mathrm{X}(a(a+1), 1)-Y(a(a+1), 1)-2\left(6 F_{4, a, 5}-2 P_{a}^{5}\right)-2 \alpha \beta=0$
6. $X\left(2^{2 n}, 2^{2 n}\right)-(1+\alpha \beta)\left(3 J_{4 n}+1\right)=0$

1.4 Approach4:

Rewriting (5) as $v^{2}-S^{2}=\alpha \beta T^{2}$
Factorisation of the equation (17) gives

$$
\begin{equation*}
(v+S)(v-S)=(\alpha T)(\beta T) \tag{18}
\end{equation*}
$$

Considering (18) and using the method of cross multiplication the non-zero integral solution of (1) are obtained as

$$
\begin{aligned}
& x=u+m^{2} \alpha-n^{2} \beta-2 \beta m n \\
& y=u-\left(m^{2} \alpha-n^{2} \beta-2 \beta m n\right) \\
& z=u+m^{2} \alpha-n^{2} \beta+2 \alpha m n \\
& w=u-\left(m^{2} \alpha-n^{2} \beta+2 \alpha m n\right) \\
& X=u+m^{2} \alpha+n^{2} \beta \\
& Y=u-m^{2} \alpha-n^{2} \beta
\end{aligned}
$$

Properties:

1. $x(2 a, a)-y(2 a, a)-(4 \alpha-5 \beta)\left(6 F_{4, a, 5}-T_{4, a}^{2}\right) \equiv 0(\bmod 3)$
2. $z(a, 2 a)-w(a, 2 a)-2 \alpha P_{a}^{5}+\alpha C P_{a, 6}=0$
3. $3(X(a, 2 a)-Y(a, 2 a))-(\alpha+4 \beta)\left(S_{a}-1\right) \equiv 0(\bmod 6)$
4. $3(X(a, a)-x(a, a)+z(a, a))-(5 \beta+\alpha)\left(2 T_{5, a}+2 T_{3, a}-T_{4, a}\right) \equiv 0(\bmod 3)$

1.5 Approach5:

(17) can be written as a set of double equations in five different ways as shown below:

Set1: $v+S=\alpha T, v-S=\beta T$
Set2: $v+S=\alpha \beta, v-S=T^{2}$
Set3: $v+S=\beta T^{2}, v-S=\alpha$
Set4: $v+S=\alpha, v-S=\beta T^{2}$
Set5: $v+S=T^{2}, v-S=\alpha \beta$
Solving each of the above sets, the corresponding values of v, S and T are given by
Set1: $v=(\alpha+\beta) T_{1}, S=(\alpha-\beta) T_{1}, T=2 T_{1}$
Set2: $v=2 \alpha_{1} \beta_{1}+\alpha_{1}+\beta_{1}+2 T_{1}^{2}+2 T_{1}+1, S=2 \alpha_{1} \beta_{1}+\alpha_{1}+\beta_{1}-2 T_{1}^{2}-2 T_{1}, T=2 T_{1}+1$

$$
\begin{aligned}
& \text { Set3: } v=\beta_{1} T^{2}+\alpha_{1}, S=\beta_{1} T^{2}-\alpha_{1} \\
& \text { Set4: } v=2 \beta T_{1}^{2}+\alpha_{1}, S=\alpha_{1}-2 \beta T_{1} \\
& \text { Set5: } v=2 T_{1}^{2}+\alpha_{1} \beta, S=2 T_{1}^{2}-\alpha_{1} \\
& \text { In view of (4) and (2), the corresponding } \\
& \qquad \begin{aligned}
x & =u+(\alpha-3 \beta) T_{1} \\
y & =u-(\alpha-3 \beta) T_{1} \\
z & =u+(3 \alpha-\beta) T_{1} \\
w & =u-(3 \alpha-\beta) T_{1} \\
X & =u+(\alpha+\beta) T_{1} \\
Y & =u-(\alpha+\beta) T_{1}
\end{aligned}
\end{aligned}
$$

$$
\text { Set4: } v=2 \beta T_{1}^{2}+\alpha_{1}, S=\alpha_{1}-2 \beta T_{1}^{2}, T=2 T_{1}
$$

$$
\text { Set5: } v=2 T_{1}^{2}+\alpha_{1} \beta, S=2 T_{1}^{2}-\alpha_{1} \beta, T=2 T_{1}
$$

In view of (4) and (2), the corresponding solutions to (1) obtained from set 1 are represented as shown below:

Properties:

1. $3 k\left[x(a)+z(a)-4(\alpha-\beta)\left(2 T_{3, a}-2 C P_{a, 6}+S O_{a}\right)\right]$ is a nasty number
2. $x(a)-y(a)=2(5 \alpha-3 \beta)\left[6 P_{a}^{3}-6 T_{3, a}+3\left(O H_{a}\right)-2 C P_{a, 3}\right]$

For simplicity, we exhibit below the integer solutions obtained from sets2 to 5 respectively
Set2:

$$
\begin{aligned}
& x=u+f\left(\alpha_{1}, \beta_{1}, T_{1}\right) \\
& y=u-f\left(\alpha_{1}, \beta_{1}, T_{1}\right) \\
& z=u+g\left(\alpha_{1}, \beta_{1}, T_{1}\right) \\
& w=u-g\left(\alpha_{1}, \beta_{1}, T_{1}\right) \\
& X=u+\left(2 \alpha_{1} \beta_{1}+\alpha_{1}+\beta_{1}+2{T_{1}}^{2}+2 T_{1}+1\right) \\
& Y=u-\left(2 \alpha_{1} \beta_{1}+\alpha_{1}+\beta_{1}+2 T_{1}^{2}+2 T_{1}+1\right)
\end{aligned}
$$

Where

$$
\begin{aligned}
& f\left(\alpha_{1}, \beta_{1}, k\right)=2 \alpha_{1} \beta_{1}+\alpha_{1}+\beta_{1}-2 k^{2}-2 k-\left(2 \beta_{1}+1\right)(2 k+1) \\
& g\left(\alpha_{1}, \beta_{1}, k\right)=2 \alpha_{1} \beta_{1}+\alpha_{1}+\beta_{1}-2 k^{2}-2 k+\left(2 \alpha_{1}+1\right)(2 k+1)
\end{aligned}
$$

Set3:

$$
\begin{aligned}
& x=u+\beta_{1} T^{2}-\alpha_{1}-2 \beta_{1} T \\
& y=u-\beta_{1} T^{2}+\alpha_{1}+2 \beta_{1} T \\
& z=u+\beta_{1} T^{2}-\alpha_{1}+2 \alpha_{1} T \\
& w=u-\beta_{1} T^{2}+\alpha_{1}-2 \alpha_{1} T \\
& X=u+\beta_{1} T^{2}+\alpha_{1} \\
& Y=u-\beta_{1} T^{2}-\alpha_{1}
\end{aligned}
$$

Set4:

$$
\begin{aligned}
& x=u+\alpha_{1}-2 \beta T_{1}^{2}-2 \beta T_{1} \\
& y=u-\left(\alpha_{1}-2 \beta T_{1}^{2}-2 \beta T\right) \\
& z=u+\alpha_{1}-2 \beta T_{1}^{2}+4 \alpha_{1} T_{1} \\
& w=u-\left(\alpha_{1}-2 \beta T_{1}^{2}+4 \alpha_{1} T_{1}\right) \\
& X=u+2 \beta T_{1}^{2}+\alpha_{1} \\
& Y=u-2 \beta T_{1}^{2}-\alpha_{1}
\end{aligned}
$$

Set5:

$$
\begin{aligned}
& x=u+2 T_{1}^{2}-\alpha_{1} \beta-2 \beta T_{1} \\
& y=u-\left(2 T_{1}^{2}-\alpha_{1} \beta-2 \beta T_{1}\right) \\
& z=u+2 T_{1}^{2}-\alpha_{1} \beta+4 \alpha_{1} T_{1} \\
& w=u-\left(2 T_{1}^{2}-\alpha_{1} \beta+4 \alpha_{1} T_{1}\right) \\
& X=u+2 T_{1}^{2}+\alpha_{1} \beta \\
& Y=u-2 T_{1}^{2}-\alpha_{1} \beta
\end{aligned}
$$

2. CaseII:

Choose α and β such that $\alpha \beta$ is a perfect square, say, d^{2}
(5) is written as $S^{2}+(d T)^{2}=v^{2}$

2.1 Approach6:

The solution of (19) can be written as

$$
\begin{equation*}
d T=a^{2}-b^{2}, S=2 a b, v=a^{2}+b^{2} \tag{20}
\end{equation*}
$$

Considering (20), (4) \& (2) and performing some algebra the integral solution of (1) is obtained as

$$
\begin{align*}
& x=u+2 d^{2} A B-\beta d\left(A^{2}-B^{2}\right) \\
& y=u-2 d^{2} A B+\beta d\left(A^{2}-B^{2}\right) \\
& z=u+2 d^{2} A B+\alpha d\left(A^{2}-B^{2}\right) \\
& w=u-2 d^{2} A B-\alpha d\left(A^{2}-B^{2}\right) \tag{21}\\
& X=u+d^{2}\left(A^{2}+B^{2}\right) \\
& Y=u-d^{2}\left(A^{2}+B^{2}\right)
\end{align*}
$$

Properties:

1. $x(2 a, a)-y(2 a, a)-\left(4 d^{2}-3 \beta d\right)\left(T_{6, a}+3 T_{4, a}-2 T_{5, a}\right)=0$
2. $2(z(2 a, a)-w(2 a, a))-\left(4 d^{2}-3 \alpha d\right)\left(T_{10, a}+3 T_{4, a}-2 T_{5, a}\right)=0$
3. $X(2 a, a)-Y(2 a, a)=d^{2}\left(2 T_{12, a}+9 T_{4, a}-2 T_{20, a}\right)$
4. $6(x(a, a)+y(a, a)+z(a, a)+w(a, a)+X(a, a)-Y(a, a)-4 k)$ is a nasty number
5. $k^{2}\left[X\left(2^{2 n}, 2^{2 n}\right)-d^{2}\left(j_{4 n+1}+1\right)\right]$ is a cubic integer

2.2 Approach7:

(19) can be written as

$$
\begin{equation*}
v^{2}-(d T)^{2}=S^{2} \tag{22}
\end{equation*}
$$

Writing (22) as a set of double equations as

$$
v+d T=1, v-d T=S^{2}
$$

and Solving, the corresponding values of v, S and T are given by

$$
v=2 S_{1}^{2} d^{2}+2 S_{1} d+1, T=-\left(2 S_{1}^{2} d+2 S_{1}\right), S=2 S_{1} d+1
$$

In view of (4) and (2), the corresponding solutions to (1) are represented as
$x=u+2 S_{1} d+1+\beta\left(2 S_{1}{ }^{2} d+2 S_{1}\right)$
$y=u-2 S_{1} d-1-\beta\left(2 S_{1}{ }^{2} d+2 S_{1}\right)$
$z=u+2 S_{1} d+1-\alpha\left(2 S_{1}{ }^{2} d+2 S_{1}\right)$
$w=u-2 S_{1} d-1+\alpha\left(2 S_{1}^{2} d+2 S_{1}\right)$
$X=u+2 S_{1}{ }^{2} d^{2}+2 S_{1} d+1$
$Y=u-2 S_{1}{ }^{2} d^{2}-2 S_{1} d-1$

Properties:

1. $x(a)+y(a)=(\alpha+\beta)\left[d\left(6 F_{4, a, 5}-3 C P_{a, 6}-T_{4, a^{2}}^{2}\right)+3 T_{4, a}-T_{8, a}\right]$
2. $X(a)-2 d^{2}\left(6 P_{a}^{5}-C P_{a, 6}\right)-2 d\left(2 T_{3, a}-T_{4, a}\right)-k=1$

2.3 Approach8:

(19) can be rewritten as
$v^{2}-S^{2}=(d T)^{2}$
Writing (23) as a set of double equations in 3 different ways as shown below
Set1: $v+S=T^{2}, v-S=d^{2}$
Set2: $v+S=d^{2}, v-S=T^{2}$
Set3: $v+S=d T^{2}, v-S=d$
Solving each of the above sets, the corresponding values of v, S and T are given by
Set1: $v=2\left(f^{2}+e^{2}\right)+2(f+e)+1, S=2\left(e^{2}-f^{2}\right)+2(e-f), T=2 e+1$
Set2: $v=2\left(f^{2}+e^{2}\right), S=2\left(f^{2}-e^{2}\right), T=2 e$
Set3: $v=\left(T^{2}+1\right) f, S=\left(T^{2}-1\right) f$
In view of (4) and (2), the corresponding solutions to (1) are represented as shown below:

Set1:

$x=u+2\left(e^{2}-f^{2}\right)+2(e-f)-\beta(2 e+1)$
$y=u-2\left(e^{2}-f^{2}\right)-2(e-f)+\beta(2 e+1)$
$z=u+2\left(e^{2}-f^{2}\right)+2(e-f)+\alpha(2 e+1)$
$w=u-2\left(e^{2}-f^{2}\right)-2(e-f)-\alpha(2 e+1)$
$X=u+2\left(f^{2}+e^{2}\right)+2(f+e)+1$
$Y=u-2\left(f^{2}+e^{2}\right)-2(f+e)-1$
Set2:

$$
\begin{aligned}
& x=u+2\left(e^{2}-f^{2}\right)-2 \beta e \\
& y=u-2\left(e^{2}-f^{2}\right)+2 \beta e \\
& z=u+2\left(e^{2}-f^{2}\right)+2 \alpha e \\
& w=u-2\left(e^{2}-f^{2}\right)-2 \alpha e \\
& X=u+2\left(e^{2}+f^{2}\right) \\
& Y=u-2\left(e^{2}+f^{2}\right)
\end{aligned}
$$

Set3:

$x=u+\left(T^{2}-1\right) f-\beta T$
$y=u-\left(T^{2}-1\right) f+\beta T$
$z=u+\left(T^{2}-1\right) f+\alpha T$
$w=u-\left(T^{2}-1\right) f-\alpha T$
$X=u+\left(T^{2}+1\right) f$
$Y=u-\left(T^{2}+1\right) f$

Remarkable observation:

If ($x_{0}, y_{0}, z_{0}, w_{0}, X_{0}, Y_{0}$) be any given integral solution of (1), then the general solution pattern is presented in the matrix form as follows:

Odd ordered solutions:
$\left(\begin{array}{c}x_{2 n-1} \\ y_{2 n-1} \\ z_{2 n-1} \\ w_{2 n-1} \\ X_{2 n-1} \\ Y_{2 n-1}\end{array}\right)=\left(\begin{array}{cccc}1 & 0 & (\alpha+\beta)^{4 n-3}(\beta-\alpha) & -2 \beta(\alpha+\beta)^{4 n-3} \\ 1 & 0 & -(\alpha+\beta)^{4 n-3}(\beta-\alpha) & 2 \beta(\alpha+\beta)^{4 n-3} \\ 1 & 0 & -2 \alpha(\alpha+\beta)^{4 n-3} & (\alpha-\beta)(\alpha+\beta)^{4 n-3} \\ 1 & 0 & 2 \alpha(\alpha+\beta)^{4 n-3} & -(\alpha-\beta)(\alpha+\beta)^{4 n-3} \\ 1 & 1 & 0 & u_{0} \\ 1 & -1 & 0 & v_{0} \\ p_{0} \\ q_{0}\end{array}\right)$

Even ordered solutions:

The values of x, y, z, w, X and Y in all the above approaches satisfy the following properties:

1. $3(x+y)(z+w+X+Y)$ is a nasty number.
2. $x+y+z+w=2(X+Y)$
3. $2\left[x^{2}+y^{2}+X^{2}+Y^{2}-(z+w)^{2}\right]-(x-y)^{2}-(X-Y)^{2}=0$
4. $x^{2}-y^{2}+z^{2}-w^{2}+X^{2}-Y^{2}=0(\bmod 4)$
5. $(x+y)(z+w)(X+Y)$ is a cubical integer
6. $x y-z w+(k-y)^{2}-(k-w)^{2}=0$

III. CONCLUSION

Instead of (4), the substitution

$$
p=S+\beta T, q=S-\alpha T
$$

in (3), reduces it to the same equation (5).Then different solutions can be obtained, using the same patterns

REFERENCES

[1] L.E. Dickson, History of Theory of numbers, vol.2, Chelsea Publishing company, New York, 1952.
[2] L.J. Mordell, Diophantine Equations, Academic press, London, 1969.
[3] Carmichael.R.D, The Theory of numbers and Diophantine Analysis, New York, Dover, 1959
[4] M.A.Gopalan and S.Premalatha , Integral solutions of $(x+y)\left(x y+w^{2}\right)=2\left(k^{2}+1\right) z^{3}$ Bulletin of pure and applied sciences,Vol.28E(No.2),197-202, 2009
[5] M.A.Gopalan and V.pandiChelvi, Remarkable solutions on the cubic equation with four unknowns $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=28(\mathrm{x}+\mathrm{y}+\mathrm{z}) \mathrm{w}^{2}$, Antarctica J.of maths, Vol.4, No.4, 393-401, 2010.
[6] M.A.Gopalan and B.Sivagami, Integral solutions of homogeneous cubic equation with four unknowns $x^{3}+y^{3}+z^{3}=3 x y z+2(x+y) w^{3}$, Impact.J.Sci.Tech, Vol.4, No.3, 53-60, 2010.
[7] M.A.Gopalan and S.Premalatha, On the cubic Diophantine equation with four unknowns
$(x-y)\left(x y-w^{2}\right)=2\left(n^{2}+2 n\right) z^{3}$, International Journal of mathematical sciences, Vol.9,No.1-2, Jan-June, 171-175, 2010.
[8] M.A.Gopalan and J.KaligaRani, Integral solutions of $\quad x^{3}+y^{3}+(x+y) x y=z^{3}+w^{3}+(z+w) z w$, Bulletin of pure and applied sciences, Vol.29E (No.1), 169-173, 2010.
[9] M.A.Gopalan and S.Premalatha Integral solutions of $(x+y)\left(x y+w^{2}\right)=2(k+1) z^{3}$, The Global Journal of applied Mathematics and Mathematical sciences, Vol.3, No.1-2, 51-55, 2010
[10] M.A.Gopalan, S.Vidhyalakshmi and T.R.Usha Rani, On the cubic equation with five unknowns

$$
x^{3}+y^{3}=z^{3}+w^{3}+t^{2}(x+y), \text { Indian Journal of Science, Vol.1, No.1, 17-20, Nov } 2012 .
$$

[11] M.A.Gopalan, S.Vidhyalakshmi and T.R.Usha Rani , Integral solutions of the cubic equation with five unknowns

$$
x^{3}+y^{3}+u^{3}+v^{3}=3 t^{3}, \text { IJAMA, Vol. } 4 \text { (2), 147-151, Dec } 2012
$$

